BookSmart

This blog is Related With Books, All kinds of books, Smartbooks,Books in hindi , Ncert Books,Cbse books,All kinds of text books ,Hindi-English books,Class I- XII all books , Success Stories books , BookStore Buying books,

Educational Site Made by Abhishek chauhan for You Dear Friends

Hy Guys This site can very helpful for you to increase your Basic Knowledge of your Mind in ur STUDY On this site you get free < BOOKS < NOTES IN PDfs and BEST TIPS VIDEOs And Extra More things like- JOKES< Natural pictures < SCENERY < And Some Related to Technology.....

Labels

# Special ! Best essay on Teacher's day (1) 12th (1) 12th Syllabus (2) 15 August Special - राष्ट्रीय एकता पर निबंध ! Essay on National Unity of India ! (1) A Thing of Beauty #Main Points of the poem # Important questions and answers for board Exam (1) AHSEC RESULT 2019 CHECK HERE (1) Best Essay on Unity is Strenght ! Ekta mei bal hai best hindi nibandh ! (1) Biography of Abhi-chauhan (1) Class 10th New syllabus-(Blue -print) Question patterns (1) Class 12th (1) Class 12th Maths Ncert Solutions (1) Class 12th (Pertry section) summary_ full Explanation both Hindi – English -Main points - and question answers (1) Class 12th English (Flamingo) Prose Lessons ! Question-Ans with Full explanation. (8) Class 12th Poetry (Section) full Summary Explanation -Main points - and question answers (2) Different between (1) Education (2) English Grammar - ( Tense ) (1) Essay on Books Both English & Hindi (1) Essay on Books In Hindi 600 words (1) Grammar (1) Gyan with As (1) Happiness Poem (1) Heart touching poem On Maariage ! Shaadi Par hindi Kavita ! (1) Hindi-Essay (1) Hindi-Essay ( Diwali's Pollution ) (1) HSLC (Seba) RESULT (1) NCERT (2) privacy policy (1) Questions and Answers (Important Notes) (1) Ramcharitmanas-Sunderkand-Shlok (2) Summary full explanaion both in hindi and english (1) Terms and Conditions (1) Top 20 Common Questions For English (1) Vistas (Supplymentry Reader) (2) पुस्तक पर लंबा निबंध(Long Essay On Books) (1)

Thursday, October 17, 2019

Class 12th Math Differntial Equations Exercise 9.4 Ncert Solutions // Differential Equations Solutions



    Class 12th Math Exercise 9.1 & 9.2 NcertSolutions // Differential Equations Solutions          

Class 12th Math Differntial Equations Exercise 9.4 Ncert Solutions  Differential Equations Solutions
Class 12th Math Differntial Equations Exercise 9.4 Ncert Solutions  Differential Equations Solutions

          

     Differential Equations           

                                                              
     (Click Here For Exercise 9.1 & Exercise 9.2 )                                                       
                                                                 
                                    Exercise 9.4

For each of the differential equations in Exercises 1 to 10, find the general solution:

1.dydx=1−cosx1+cosxdydx=1−cosx1+cosx

Sol:    We have
dydx=1−cosx1+cosx=sin2x2+cos2x2−cos2x2+sin2x2sin2x2+cos2x2+cos2x2−sin2x2=sin2x2+sin2x2cos2x2+cos2x2=2sin2x22cos2x2=tan2x2dydx=(sec2x2−1)dydx=1−cosx1+cosx=sin2x2+cos2x2−cos2x2+sin2x2sin2x2+cos2x2+cos2x2−sin2x2=sin2x2+sin2x2cos2x2+cos2x2=2sin2x22cos2x2=tan2x2dydx=(sec2x2−1)

Separating the variables of the above eqaution we get
dy=(sec2x2−1)dxdy=(sec2x2−1)dx

Now, integrating both sides of the above equation, we get
∫dy=∫(sec2x2−1)dxy=tan2x212−x+Cy=2tan2x2−x+C∫dy=∫(sec2x2−1)dxy=tan2x212−x+Cy=2tan2x2−x+C
which is the general solution of the given differential equation


2.  dydx=√4−y2dydx=4−y2

Sol:    We have
dydx=√4−y2dydx=4−y2
Separating the variables of the above equation we get
dy√4−y2=dxdy4−y2=dx

Integrating both sides of the equation, we get

∫dy√4−y2=∫dx∫dy√22−y2=∫dxsin−1ya=x+Cya=sin(x+C)y=asin(x+C)∫dy4−y2=∫dx∫dy22−y2=∫dxsin−1ya=x+Cya=sin(x+C)y=asin(x+C)

which is the general solution of the given differential equation.

3. dydx+y=1(y≠1)dydx+y=1(y≠1)

Sol:    We have
dydx+y=1(y≠1)dydx=1−y−dyy−1=xdydx+y=1(y≠1)dydx=1−y−dyy−1=x

Separating the variables in the above equation, we get
−dyy−1=x−dyy−1=x

Integrating both sides of the equation we get
∫dyy−1=−∫xlog|y−1|=−x+Cy−1=e−x+Cy=1+e−x.eCy=1+Ae−x∫dyy−1=−∫xlog|y−1|=−x+Cy−1=e−x+Cy=1+e−x.eCy=1+Ae−x

4. sec2xtany dx+sec2ytanx dy=0sec2xtany dx+sec2ytanx dy=0

Sol:    We have
sec2xtany dx+sec2ytanx dy=0sec2xtany dx+sec2ytanx dy=0
Separating the variables of the above equation we get
sec2xtanx dx+sec2ytany dy=0sec2xtanx dx+sec2ytany dy=0
Integrating both sides of the equation we get
∫sec2xtanx dx+∫sec2ytany dy=∫0∫d(tanx)tanx dx+∫d(tany)tany dy=∫0log|tanx|+log|tany|=logClog|tanxtany|=logCtanxtany=C∫sec2xtanx dx+∫sec2ytany dy=∫0∫d(tanx)tanx dx+∫d(tany)tany dy=∫0log|tanx|+log|tany|=logClog|tanxtany|=logCtanxtany=C
which is the general solution of the given differential equation


Class 12th Math Differntial Equations Exercise 9.4 Ncert Solutions  Differential Equations Solutions


(Click Here For Exercise 9.1 & Exercise 9.2 ) 

Top 20 Important 100% Common Questions And Answers For H.S Final 2020(Click Here)For English


5.(ex+e−x)dy−(ex−e−x)dx=0(ex+e−x)dy−(ex−e−x)dx=0

Sol:   We have
(ex+e−x)dy−(ex−e−x)dx=0(ex+e−x)dy−(ex−e−x)dx=0
Separating the variables of the above equation we get
dy=ex+e−xex−e−xdxdy=ex+e−xex−e−xdx

Integrating both sides of the above equation, we get
∫dy=∫ex+e−xex−e−xdx∫dy=∫d(ex−e−x)ex−e−xdxy=log|ex−e−x|+C∫dy=∫ex+e−xex−e−xdx∫dy=∫d(ex−e−x)ex−e−xdxy=log|ex−e−x|+C
which is the general solution of the given differential equation.

6. dydx=(1+x2)(1+y2)dydx=(1+x2)(1+y2)

Sol:    We havedydx=(1+x2)(1+y2)dydx=(1+x2)(1+y2)
Separating the variables of the above equation we get
dy1+y2=(1+x2)dxdy1+y2=(1+x2)dx
Integrating both sides of the above equation we get
∫dy1+y2=∫(1+x2)dx∫dy1+y2=∫dx+∫x2dxtan−1y=x+x33+C∫dy1+y2=∫(1+x2)dx∫dy1+y2=∫dx+∫x2dxtan−1y=x+x33+C
 which is the general solution of the given differential equation


7.  ylogy dx−x dy=0ylogy dx−x dy=0

Sol:  We haveylogy dx−x dy=0ylogy dx−x dy=0
Separating the variables of the above equation we get
dyylogy=dxxdyylogy=dxx
Integrating both sides of the above equation,we get
∫dyylogy=∫dxx∫d(logy)logy=∫dxxlog|logy|=logx+logClog|logy|=logxClogy=xCy=exC∫dyylogy=∫dxx∫d(logy)logy=∫dxxlog|logy|=logx+logClog|logy|=logxClogy=xCy=exC
which is the genral solution of the given differential equation


8. x5dydx=−y5x5dydx=−y5

Sol: We havex5dydx=−y5x5dydx=−y5
Separating the variables of the above equation we get
dyy5+dxx5=0dyy5+dxx5=0
Integrating both sides of the above equation we get
∫dyy5+∫dxx5=Ay−5+1−5+1+x−5+1−5+1=Ay−4−4+y4−4=Ay−4+x−4=−4Ay−4+x−4=C∫dyy5+∫dxx5=Ay−5+1−5+1+x−5+1−5+1=Ay−4−4+y−4−4=Ay−4+x−4=−4Ay−4+x−4=C
which is the required general solution of the given differential equation


9. dydx=sin−1xdydx=sin−1x

Sol: We havedydx=sin−1xdydx=sin−1x
Separating the variables in the above equation we have
 
dy=sin−1x dxdy=sin−1x dx
Integrating both sides of the above equation we get
∫dy=∫sin−1x dxy=sin−1x∫1dx−∫1√1−x2 dx (Integrating by parts)y=xsin−1x+∫−2x2√1−x2 dxy=xsin−1x+∫d(√1−x2)y=xsin−1x+√1−x2+C∫dy=∫sin−1x dxy=sin−1x∫1dx−∫11−x2 dx (Integrating by parts)y=xsin−1x+∫−2x21−x2 dxy=xsin−1x+∫d(1−x2)y=xsin−1x+1−x2+C
which is the general solution of the given differential equation.

10 extany dx+(1−ex)sec2y dy=0extany dx+(1−ex)sec2y dy=0

Sol: We have extany dx+(1−ex)sec2y dy=0extany dx+(1−ex)sec2y dy=0
Separating the variables, the above equation can be written as
(ex1−ex)dx+(sec2ytany)dy=0(ex1−ex)dx+(sec2ytany)dy=0
Integrating both sides of the above equation we get
∫(ex1−ex)dx+∫(sec2ytany)dy=∫0∫−(−ex1−ex)dx+∫(sec2ytany)dy=∫0∫(d(1−ex)1−ex)dx+∫(d(tany)tany)dy=∫0−log|1−ex|+log|tany|=logClog(tany1−ex)=logCtany=C(1−ex)∫(ex1−ex)dx+∫(sec2ytany)dy=∫0∫−(−ex1−ex)dx+∫(sec2ytany)dy=∫0∫(d(1−ex)1−ex)dx+∫(d(tany)tany)dy=∫0−log|1−ex|+log|tany|=logClog(tany1−ex)=logCtany=C(1−ex)
which is the general solution of the given differential equation.



(Click Here For Exercise 9.1 & Exercise 9.2 ) 

11. x3+x2+x+1)dydx=2x2+x:y=1x3+x2+x+1)dydx=2x2+x:y=1 when x =0

Sol: We have(x3+x2+x+1)dydx=2x2+x(x3+x2+x+1)dydx=2x2+x
Separating the variables the above equation can be written as
dy=2x2+xx3+x2+x+1 dxdy=2x2+xx3+x2+x+1 dx
Integrating both sides of the equation we get
∫dy=∫2x2+xx3+x2+x+1 dxy=∫2x2+x(x2+1)(x+1) dxLet 2x2+x(x2+1)(x+1)=Ax+1+Bx+Cx2+12x2+x(x2+1)(x+1)=A(x2+1)+(Bx+C)(x+1)(x+1)(x2+1)2x2+x=A(x2+1)+(Bx+C)(x+1)2x2+x=Ax2+Bx2+Bx+Cx+A+CEquating the coefficients of corresponding terms we getA+B=2B+C=1A+C=0Solving the above three equations we getA=12,  B=32,  C=−12Substituting these values in eq(1) we gety=∫12(x+1) dx+∫3x−12(x2+1) dxy=∫12(x+1) dx+∫3x2(x2+1) dx−∫12(x2+1) dxy=∫12(x+1) dx+34∫2x(x2+1) dx−12∫1(x2+1) dxy=12log|x+1|+34log|x2+1|−12tan−1x+C(1)(1)∫dy=∫2x2+xx3+x2+x+1 dx(1)y=∫2x2+x(x2+1)(x+1) dxLet 2x2+x(x2+1)(x+1)=Ax+1+Bx+Cx2+12x2+x(x2+1)(x+1)=A(x2+1)+(Bx+C)(x+1)(x+1)(x2+1)2x2+x=A(x2+1)+(Bx+C)(x+1)2x2+x=Ax2+Bx2+Bx+Cx+A+CEquating the coefficients of corresponding terms we getA+B=2B+C=1A+C=0Solving the above three equations we getA=12,  B=32,  C=−12Substituting these values in eq(1) we gety=∫12(x+1) dx+∫3x−12(x2+1) dxy=∫12(x+1) dx+∫3x2(x2+1) dx−∫12(x2+1) dxy=∫12(x+1) dx+34∫2x(x2+1) dx−12∫1(x2+1) dx(1)y=12log|x+1|+34log|x2+1|−12tan−1x+C

Given that y=1 when x=0. Substituting these values in above equation we get
1=12log|0+1|+34log|02+1|−12tan−10+CC=11=12log|0+1|+34log|02+1|−12tan−10+CC=1
Substituting the value of C in eq (1) we get
y=12log|x+1|+34log|x2+1|−12tan−1x+1y=14log|x+1|2+14log|x2+1|3−12tan−1x+1y=14log[(x+1)2(x2+1)3]−12tan−1x+1y=12log|x+1|+34log|x2+1|−12tan−1x+1y=14log|x+1|2+14log|x2+1|3−12tan−1x+1y=14log[(x+1)2(x2+1)3]−12tan−1x+1

Top 20 Important 100% Common Questions And Answers For H.S Final 2020(Click Here)

12. x(x2−1)dydx=1:y=0x(x2−1)dydx=1:y=0 when x =2

Sol:  We have
x(x2−1)dydx=1x(x2−1)dydx=1
Separating the variables the above equation can be written as
dy=dxx(x+1)(x−1)dy=dxx(x+1)(x−1)
Integrating both sides of the above equation, we get
∫dy=∫dxx(x+1)(x−1)∫dy=∫(−1x+12(x+1)+12(x−1) dx)y=−logx+12log+1)+12log−1)+logky=12log[k2(x+1)(x−1)x2](1)∫dy=∫dxx(x+1)(x−1)∫dy=∫(−1x+12(x+1)+12(x−1) dx)y=−logx+12log+1)+12log−1)+logk(1)y=12log[k2(x+1)(x−1)x2]
Given that y=0 when x=2. Substituting these values in eq (1) we get
0=12log[k2(2+1)(2−1)22] 3k24=e0k2=430=12log[k2(2+1)(2−1)22] 3k24=e0k2=43
Substituting this value of k in eq (1) we get
y=12log[4(x+1)(x−1)3x2]y=12log[4(x+1)(x−1)3x2]

Class 12 Ncert Solution Maths Differential Equations

13. cos(dydx)=a(aR)cos(dydx)=a(aR);y =1 when x =0

Sol: We have
cos(dydx)=acos(dydx)=a
Separating variables the above equation can be written as
dydx=cos−1ady=cos−1a dx(1)dydx=cos−1a(1)dy=cos−1a dx
Integrating both sides of eq (1) we get
∫dy=∫cos−1a dxy=xcos−1a+C(2)(2)∫dy=∫cos−1a dxy=xcos−1a+C
Given that y=1 when x = 0. Putting these values in eq (2) we get
1=0×cos−1a+CC=11=0×cos−1a+CC=1
Substituting the value of C in eq (2) we get
y=xcos−1a+1y−1=xcos−1ay−1x=cos−1acosy−1x=ay=xcos−1a+1y−1=xcos−1ay−1x=cos−1acosy−1x=a

14. dydx=ytanxdydx=ytanx ;y=1 when x =0

Sol: We havedydx=ytanxdydx=ytanx
Separating the variables the baove equation can be written as
dyy=tanx dxdyy=tanx dx
Integrating both sides of the above equation we get
∫dyy=∫tanx dxlogy=log(secx)+logClogy=log(Csecx)y=Csecx(1)∫dyy=∫tanx dxlogy=log(secx)+logClogy=log(Csecx)(1)y=Csecx
Given that y =1 when x =0. Substituting these values in eq(1) we get
1=Csec0C=11=Csec0C=1
Substituting this value of C in (1) we get
y=secxy=secx

15. Find the equation of a curve passing through the point (0,0) and whose differential equation is y′=exsinxy′=exsinx.

Sol: The given differential equation is
y=exsinxy′=exsinx
dydx=exsinxdydx=exsinx
dy=exsinxdxdy=exsinxdx

Integrating both sides of the equation, we get
∫dy=∫exsinxdxy=sinx ex−∫excosx dx (Integration by parts)y=sinx ex−[cosxex−∫(−sinx)ex dx]y=sinx ex−[cosxex+∫(sinx)ex dx]y=sinx ex−cosxex−∫(sinx)ex dxy=ex(sinx−cosx)−yy+y=ex(sinx−cosx)2y=ex(sinx−cosx)y=12ex(sinx−cosx)+C(1)∫dy=∫exsinxdxy=sinx ex−∫excosx dx (Integration by parts)y=sinx ex−[cosxex−∫(−sinx)ex dx]y=sinx ex−[cosxex+∫(sinx)ex dx]y=sinx ex−cosxex−∫(sinx)ex dxy=ex(sinx−cosx)−yy+y=ex(sinx−cosx)2y=ex(sinx−cosx)(1)y=12ex(sinx−cosx)+C
Substituting x=0 and y=0 in the above equation we get
0=12e0(sin0−cos0)+C0=121(−1)+CC=−120=12e0(sin0−cos0)+C0=121(−1)+CC=−12
Substituting the value of C in equation(1) we get
y=12ex(sinx−cosx)+122y=12ex(sinx−cosx)+12y−1=12ex(sinx−cosx)y=12ex(sinx−cosx)+122y=12ex(sinx−cosx)+12y−1=12ex(sinx−cosx)
 which is the required equation of a curve passing throught the point (0,0).


(Click Here For Exercise 9.1 & Exercise 9.2 ) 

Class 12th Math Differntial Equations Exercise 9.4 Ncert Solutions // Differential Equations Solutions


16. For the differential equation xydydx=(x+2)(y+2)xydydx=(x+2)(y+2), find the solution curve passing through the point (1,-1).

Sol: We havexydydx=(x+2)(y+2)xydydx=(x+2)(y+2)
Separating the variables the above equation can be written as
ydyy+2=x+2x dxydyy+2=x+2x dx
Integrating both sides of the above equation, we get
∫ydyy+2=∫x+2x dx∫y+2−2y+2 dy=∫x+2xdx∫1.dy−21y+2 dy=∫dx+21x dxy−2log|y+2|=x+2logx+C(1)∫ydyy+2=∫x+2x dx∫y+2−2y+2 dy=∫x+2xdx∫1.dy−21y+2 dy=∫dx+21x dx(1)y−2log|y+2|=x+2logx+C
The curve passes through the point (1, -1). Substituting  x =1 and y = -1 in eq (1) we get
−1−2log|−1+2|=1+2log1+CC=−2 since log 1 =0−1−2log|−1+2|=1+2log1+CC=−2 since log 1 =0
Substituting the value of C in eq (1) we get
y−2log|y+2|=x+2logx+−2y−x+2=log(y+2)2+logx2y+x−2=log(x2(y+2)2)y−2log|y+2|=x+2logx+−2y−x+2=log(y+2)2+logx2y+x−2=log(x2(y+2)2)
which is the required equation of the curve passing through the point (1, -1)

17. Find the equation of a curve passing through the point (0,-2) given that at any point (x,y) on the curve, the product of the slope of its tangent and y coordinate of the point is equal to the x coordinate of the point.

Sol: Slope of a tangent is = dydxdydx
Given that 
ydydx=xydydx=x
Separating the variables the above equation can be written as
y dy=x dxy dy=x dx
Integrating both sides of the equation we get
∫y dy=∫xdxy22=x22+C(1)∫y dy=∫xdx(1)y22=x22+C
 Given that the curve passes throught the point(0, -2)
Substituting x = 0 and y =-2 in eq (1)  we get
(−2)22=022+C42=CC=2(−2)22=022+C42=CC=2
 Substituting the value of C in eq (1) we get
y22=x22+Cy22=x22+2y22=x2+42y2=x2+4y2−x2=4y22=x22+Cy22=x22+2y22=x2+42y2=x2+4y2−x2=4
which is the required equation of the curve passing through  the point (0,-2)

18. At any point (x,y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (-4,-3). Find the equation of the curve given that it passes through (-2,1).

Sol:  The slope of the line passing through the point (x,y) and (-4,-3) is = y+3x+4y+3x+4
We know slope of the tangent =
dydxdydx
Given that
dydx=2y+3x+4dyy+4=2(x+3)dxdydx=2y+3x+4dyy+4=2(x+3)dx
Integrating both sides of the equation
∫dyy+3=∫frac2x+4dxlog|y+3|=2log|x+4|+logClog|y+3|=logC(x+4)2y+3=C(x+4)2tag1 ∫dyy+3=∫frac2x+4dxlog|y+3|=2log|x+4|+logClog|y+3|=logC(x+4)2y+3=C(x+4)2tag1 
The Curve passes through the point (-2,1), Substituting x=-1 and y=1 in eq(1) we get
1+3=C(−2+4)24=C×4C=11+3=C(−2+4)24=C×4C=1
Substituting C=1 in eq (1) we get
y+3=(x+4)2y+3=(x+4)2
Which is the general solution of the given differential equation.

19.  The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Sol: Let r be the radius of the spherical baloon and V be the volume.
Therefore,
dVdt=CdVdt=C
dV=CdtdV=Cdt
Integrating both sides we get
∫dV=∫CdtV=Ct+A,where A is a constant4πr33=Ct+A(1)∫dV=∫CdtV=Ct+A,where A is a constant(1)4πr33=Ct+A
 Given that at t =0 , r =3
putting these values in eq (1) we get
4π333=C×0+AA=36π4π333=C×0+AA=36π
equation (1) now becomes
4πr33=Ct+36π(2)(2)4πr33=Ct+36π

When t = 3 sec , r= 6. Putting these values in eq (2) we get
4π633=C×3+36π288π=3C+36πC=84π4π633=C×3+36π288π=3C+36πC=84π
Thus, eq(2) becomes
4πr33=84πt+36π4πr3=3×4π(21t+9)r3=62t+27r=(62t+27)134πr33=84πt+36π4πr3=3×4π(21t+9)r3=62t+27r=(62t+27)13
This is the required  radius of the spherical baloon after t seconds

20.In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 double itself in 10 years(log 2 = 0.6391)

Sol: Let p be the principal so given that
dpdt=rdpdt=r100pdpp=r100dtdpdt=rdpdt=r100pdpp=r100dt
Integrating both sides of the equation we get
∫dpp=∫r100 dtlog|p|=rt100+logClogp−logC=rt100log|pC|=rt100p=Cert100(1)∫dpp=∫r100 dtlog|p|=rt100+logClogp−logC=rt100log|pC|=rt100(1)p=Cert100
When t=0, p = 100. Substituting these values in eq (1) we get
100=Ce0C=100100=Ce0C=100
putting this value of C in eq (1) we get
p=100ert100(2)(2)p=100ert100

When t=10, p= 200. Substituting these values in eq (2) we get
200=100er×101002=er10log2=r10r=10log2r=10×0.6931r=6.931200=100er×101002=er10log2=r10r=10log2r=10×0.6931r=6.931
 Thus the value of r is 6.93%

Top 20 Important 100% Common Questions And Answers For H.S Final 2020(Click Here)


Class 12  Ncert  Solution Maths Differential Equations

21. In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with theis bank, how much will it worth after 10 years(e0.5=1.648)e0.5=1.648).

Sol: Let p be the principal. Given that
dpdt=5100pdpdt=p20dpp=dt20dpdt=5100pdpdt=p20dpp=dt20
Integrating both sides of the equation we get
log|p|=t20+logClog|p|−logC=t20logpC=t20p=Cet20(1)log|p|=t20+logClog|p|−logC=t20logpC=t20(1)p=Cet20
when t = 0, p= 1000. Substituting these value in the above equation we get
1000=Ce020C=10001000=Ce020C=1000
Putting this value of C in eq(1) we get

p=1000et20(2)(2)p=1000et20
When t =10 eq(2) becomes
p=1000e520p=1000e14p=1000e0.5p=1000×1.648p=1648p=1000e520p=1000e14p=1000e0.5p=1000×1.648p=1648
Thus, after 10 years the deposited amount will become Rs 1648.

22. In a culture, the bacteria count is 1,00,000. The number is increased by 10 % in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?

Sol: Let the number of bacteria at any time t be n.
Thus given that
dndtα ndndt=kndnn=kdtdndtα ndndt=kndnn=kdt
Integrating the aboce equation we get
log|n|=kt+C(1)(1)log|n|=kt+C
When t=0, n=100000. Substituting these values in eq (1) we get
log100000=k×0+CC=log100000log100000=k×0+CC=log100000
Putting this value of C in eq (1) we get
log|n|=kt+log100000(2)(2)log|n|=kt+log100000
 The number increases by 10 % in 2 hours
So t = 2 and n = 100000 + 10% of 100000
therefore, n = 110000
Substituting these values in eq(2) we get
log110000=2k+log100000log110000−log100000=2klog(110000100000)=2kk=12log(1110)log110000=2k+log100000log110000−log100000=2klog(110000100000)=2kk=12log(1110)
Substituting this value of k in eq (2), we get
log|n|=12log(1110)t+log100000log|n|=12log(1110)t+log100000
Now when n =200000 eq (3) becomes
log200000=12log(1110)t−log100000log200000−log100000=12log(1110)tlog(200000100000)=12log(1110)tlog2=12log(1110)tt=log212log(1110)t=2log2log(1110)log200000=12log(1110)t−log100000log200000−log100000=12log(1110)tlog(200000100000)=12log(1110)tlog2=12log(1110)tt=log212log(1110)t=2log2log(1110)

23.The general solution of the differential equationdydx=ex+ydydx=ex+y is

(A) 
ex+e−y=Cex+e−y=C                                   (B) ex+ey=Cex+ey=C
(C) 
e−x+ey=Ce−x+ey=C                               (D) e−x+e−y=Ce−x+e−y=C 

Sol:  The given differential equation can be written as
dyey=ex dxdyey=ex dx
Integrating both sides we get
∫dyey=∫ex dx∫e−y=∫ex dx−e−y+C=exex+e−y=C∫dyey=∫ex dx∫e−y=∫ex dx−e−y+C=exex+e−y=C
So the correct answer is option (A).



(Click Here For Exercise 9.1 & Exercise 9.2 ) 



No comments:

Post a Comment

Email suscription

Enter your email address:

Delivered by FeedBurner

Pages

Tags

Labels

Labels